
The l-basis of a planar rational
curve—properties and computation

Falai Chena,* and Wenping Wangb

a Department of Mathematics, University of Science and Technology of China, Hefei,

Anhui 230026, PR China
b Department of Computer Science and Information Systems, University of Hong Kong,

Hong Kong, PR China

Received 29 October 2001 received in revised form 19 November 2002 accepted 3 December 2002

Abstract

A moving line Lðx; y; tÞ ¼ 0 is a family of lines with one parameter t in a plane. A moving

line Lðx; y; tÞ ¼ 0 is said to follow a rational curve PðtÞ if the point Pðt0Þ is on the line

Lðx; y; t0Þ ¼ 0 for any parameter value t0. A l-basis of a rational curve PðtÞ is a pair of lowest

degree moving lines that constitute a basis of the module formed by all the moving lines fol-

lowing PðtÞ, which is the syzygy module of PðtÞ. The study of moving lines, especially the l-
basis, has recently led to an efficient method, called the moving line method, for computing the

implicit equation of a rational curve [3,6]. In this paper, we present properties and equivalent

definitions of a l-basis of a planar rational curve. Several of these properties and definitions

are new, and they help to clarify an earlier definition of the l-basis [3]. Furthermore, based on

some of these newly established properties, an efficient algorithm is presented to compute a l-
basis of a planar rational curve. This algorithm applies vector elimination to the moving line

module of PðtÞ, and has Oðn2Þ time complexity, where n is the degree of PðtÞ. We show that the

new algorithm is more efficient than the fastest previous algorithm [7].
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1. Introduction

A moving line is a family of lines with one parameter t in the plane, and can thus

be represented by Lðx; y; tÞ � AðtÞxþ BðtÞy þ CðtÞ ¼ 0, where AðtÞ;BðtÞ;CðtÞ are

polynomials. A moving line Lðx; y; tÞ is said to follow a rational curve

PðtÞ ¼ ðaðtÞ; bðtÞ; cðtÞÞ if the point Pðt0Þ is on the line Lðx; y; t0Þ ¼ 0 for any parameter

value t0. As a convention, we call a moving line that follows the curve PðtÞ a moving

line of PðtÞ. A l-basis of a rational curve PðtÞ is a pair of lowest degree moving lines

that constitute a basis of the module formed by all the moving lines of PðtÞ.
The l-basis of a planar rational curve has been proposed for computing the im-

plicit equation of a planar rational curve [3]. Applying a variant of Bezout�s resultant
to the l-basis, we can write the implicit equation of PðtÞ as an ðn� lÞ � ðn� lÞ de-
terminant, where 0 < l6 ½n=2	; in contrast, with other resultant based methods, the

implicit equation must be written either as an n� n determinant (using the Bezout

resultant) or as a 2n� 2n determinant (using the Sylvester resultant). In the generic

case where l ¼ bn=2c, the implicit equation can be written as an dn=2e � dn=2e de-

terminant. Thus, the l-basis provides a compact solution to the implicitization of

a planar rational curve.
Recent studies also show that the l-basis can be used to derive inversion formulas

or study the singular points of a planar rational curve [2]; besides, the rational para-

metric equation of the curve can easily be obtained from the l-basis. Hence, the

l-basis serves as a compact and useful representation of a planar rational

curve—connecting its implicit equation and parametric equation, and facilitating

the study of many properties of the curve.

The definition and some properties of the l-basis of a planar rational curve have

been studied in [3]. However, the definition of the l-basis has not been given consis-
tently, and the properties, especially those characterizing properties, of the l-basis
have not been presented completely or systematically in the literature. In light of this,

we present in Section 2 a list of properties and equivalent definitions of the l-basis of
a planar rational curve. Several of these properties and definitions are new and pro-

vide insight into efficient computation of the l-basis. These results have recently been
used in studying the reparameterization of rational ruled surfaces [1]. As an applica-

tion, in Sections 3 we describe a new algorithm for computing the l-basis of a planar

rational curve, and show that, besides being conceptually simpler, this algorithm is
more efficient than the previous known fastest algorithm for computing the l-basis
[7]. We conclude the paper in Section 4 with some open problems.

2. Definition and properties of l-basis

We begin with some preliminary knowledge about modules. Let R½t	 and R½x; y; t	
be the polynomial rings over the field of real numbers, R, and R½t	d denote the set of
d-dimensional row vectors with entries in R½t	. A set of vector polynomials

M � R½t	d is called a module over R½t	 if h1f1 þ h2f2 2 M for any f1; f2 2 M and

h1; h2 2 R½t	.
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Suppose that M � R½t	d is a module. If there exists a finite set of elements f i 2 M,

i ¼ 1; . . . ;m, such that any f 2 M can be expressed by

f ¼ h1f1 þ � � � þ hmfm; ð1Þ
with hi 2 R½t	, i ¼ 1; . . . ;m, then M is said to be finitely generated, ff1; . . . ; fmg is

called a generating set of M, and we write M ¼ hf1; . . . ; fmi. If expression (1) is un-

ique for any f 2 M, then the generating set ff1; . . . ; fmg is called a basis of the module

M. A finitely generated module over R½t	 always has a basis and is called a free

module [4].
Vector polynomials giðtÞ in R½t	3, i ¼ 1; 2; . . . ;m, are said to be R½t	-linearly inde-

pendent if
Pm

i¼1 hiðtÞgiðtÞ ¼ 0, with hiðtÞ 2 R½t	, implies hiðtÞ ¼ 0 for i ¼ 1; 2; . . . ;m.
Let a planar rational curve be given by

PðtÞ ¼ ðaðtÞ; bðtÞ; cðtÞÞ ð2Þ
in homogeneous form, where aðtÞ, bðtÞ, cðtÞ 2 R½t	 are relatively prime. The degree of

PðtÞ is defined to be n � maxfdegðaðtÞÞ; degðbðtÞÞ; degðcðtÞÞg. For brevity, we will
often denote aðtÞ; bðtÞ, and cðtÞ by a, b, and c, respectively, where there is no danger

of confusion.

A moving line is a family of lines with one parameter t, defined by [5]

Lðx; y; tÞ :¼ AðtÞxþ BðtÞy þ CðtÞ ¼ 0; ð3Þ

where AðtÞ;BðtÞ;CðtÞ 2 R½t	. The degree of Lðx; y; tÞ is defined to be

degðLðx; y; tÞÞ � maxfdegðAðtÞÞ; degðBðtÞÞ; degðCðtÞÞg:
For convenience, we also denote a moving line by LðtÞ � ðAðtÞ;BðtÞ;CðtÞÞ.

The moving line (3) follows the rational curve PðtÞ ¼ ðaðtÞ; bðtÞ; cðtÞÞ if and only if

LðtÞ � PðtÞ ¼ AðtÞaðtÞ þ BðtÞbðtÞ þ CðtÞcðtÞ � 0: ð4Þ

A moving line Lðx; y; tÞ ¼ 0 follows the curve PðtÞ if the point Pðt0Þ is on the line
Lðx; y; t0Þ ¼ 0 for any parameter value t0. So one may say that an arbitrary point

Pðt0Þ of the curve PðtÞ is at the intersection of two different moving lines of PðtÞ with
the same parameter value t0.

The moving line ideal of a rational curve PðtÞ is defined to be

IP ¼ fh1ðcx� aÞ þ h2ðcy � bÞ jh1; h2 2 R½x; y; t	g � R½x; y; t	: ð5Þ
Let J1 denote the set of all polynomials of degree one in x and y but some finite

degree in t. Then MP � IP \ J1 consists of all moving lines in IP and is a module over

R½t	 [3]. It is proved in [3] that a moving line Lðx; y; tÞ is a moving line of PðtÞ if and
only if Lðx; y; tÞ 2 MP . Thus MP is called the moving line module of PðtÞ.

The moving line module MP of the rational curve PðtÞ is isomorphic to the

module

MP ¼ fðAðtÞ;BðtÞ;CðtÞÞ j AðtÞaðtÞ þ BðtÞbðtÞ þ CðtÞcðtÞ � 0g � R½t	3

under the isomorphism AðtÞxþ BðtÞy þ CðtÞ ! ðAðtÞ;BðtÞ;CðtÞÞ. So we will use MP

and MP interchangeably to represent the moving line module of PðtÞ.
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Let a vector polynomial pðtÞ 2 R½t	3 be written as

p ¼ ðp1ðtÞ; p2ðtÞ; p3ðtÞÞ ¼
Xm

i¼0

ðpi1; pi2; pi3Þti;

with the leading coefficient vector ðpm1; pm2; pm3Þ 6¼ 0. We denote ðpm1; pm2; pm3Þ by

LVðpÞ and the degree of p by degðpÞ ¼ m. For example, for

p ¼ ð2t2 þ 3t þ 1; t þ 4; t2 þ 2t þ 3Þ;

LVðpÞ ¼ ð2; 0; 1Þ and degðpÞ ¼ 2.

Definition 1. Two moving lines p ¼ p1ðtÞxþ p2ðtÞy þ p3ðtÞ and q ¼ q1ðtÞxþ q2ðtÞy þ
q3ðtÞ are called a l-basis of a rational curve PðtÞ, or equivalently, a l-basis of MP , if
1. p and q are a basis of MP , i.e., any moving line L 2 MP can be expressed by

L ¼ h1pþ h2q; ð6Þ
with h1; h2 2 R½t	; and
2. p and q have the lowest degrees among all bases of MP ; that is, assuming

degðpÞ6 degðqÞ, then there does not exist another basis ~pp and ~qq of MP , with

degð~ppÞ6 degð~qqÞ, such that degð~ppÞ < degðpÞ or degð~qqÞ < degðqÞ.

The above definition of a l-basis appears to be different from a definition given in

[3] for the l-basis for a rational curve in Rd , d P 2. Actually, two definitions for

the l-basis are given in [3]; the first one on page 809 is for a planar rational curve

and the second one on page 824 for a rational curve in Rd . The first definition is

one of the equivalent definitions for the l-basis to be given in the present paper; how-

ever, the second condition, which covers the case of a planar rational curve, though

equivalent to the first one, contains a redundant condition.
The following is proved in [3]:

Proposition 1. Any planar rational curve PðtÞ has a l-basis.

2.1. Properties

The existence of a l-basis of a planar rational curve, along with some of its prop-

erties, are proved in [3]. In the following we will present a more complete list of prop-
erties of the l-basis, including some from [3], and then give several equivalent

definitions of the l-basis.

Theorem 1. Let p ¼ p1ðtÞxþ p2ðtÞy þ p3ðtÞ and q ¼ q1ðtÞxþ q2ðtÞy þ q3ðtÞ be a l-basis
of a planar rational curve PðtÞ, where degðpÞ6 degðqÞ. Denote p ¼ ðp1; p2; p3Þ and
q ¼ ðq1; q2; q3Þ. Then the following properties hold:
1. p and q are R½t	-linearly independent.
2. pðt0Þ 6¼ 0 and qðt0Þ 6¼ 0 for any parameter value t0.
3. pðt0Þ and qðt0Þ are linearly independent for any parameter value t0.
4. LVðpÞ and LVðqÞ are linearly independent.
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5. Expression (6) is unique for any moving line L of PðtÞ.
6. Any moving line L of PðtÞ can be expressed in (6) with degðh1pÞ6 degðLÞ and
degðh2qÞ6 degðLÞ.

7. p� q ¼ kPðtÞ for some non-zero constant k.
8. degðpÞ þ degðqÞ ¼ n. Denote degðpÞ ¼ l and degðqÞ ¼ n� l in t, where
06 l6 bn=2c. Then l is unique for a given curve PðtÞ; furthermore, l is the lowest
degree of any moving line of the curve PðtÞ.

9. IP ¼ hp; qi.
10. The implicit equation of PðtÞ is given by Resðp; q; tÞ, i.e., the resultant of p and q

with respect to t.

Proof. (1) Consider the two moving lines of PðtÞ ¼ ðaðtÞ; bðtÞ; cðtÞÞ: u ¼ ðc; 0;�aÞ and
v ¼ ð0; c;�bÞ, which are clearly R½t	-linearly independent. Then u ¼ h11pþ h12q and

v ¼ h21pþ h22q for some polynomials hij 2 R½t	, i; j ¼ 1; 2. Hence

cða; b; cÞ ¼ u� v ¼ hp� q;

where h ¼ h11h22 � h12h21 6¼ 0. Thus p� q 6¼ 0 except for possibly finitely many

values, and it follows that p and q are R½t	-linearly independent.

(2) Suppose pðt0Þ ¼ 0 for some t0, then ðt � t0ÞjpðtÞ. Let ~ppðtÞ ¼ pðtÞ=ðt � t0Þ. Then
~ppðtÞ and qðtÞ are also a basis of MP . But degð~ppðtÞÞ < degðpðtÞÞ, a contradiction to that

pðtÞ and qðtÞ are a l-basis. Similarly, one can show that qðt0Þ 6¼ 0.

(3) Suppose that pðt0Þ and qðt0Þ are linearly dependent for some t0. Then there ex-

ist constants a and b, both of them are nonzero, such that apðt0Þ þ bqðt0Þ ¼ 0. Let

L ¼ apþ bq. Then L 2 MP , and L is not identically zero, since, by Property (1), p
and q are R½t	-linearly independent. Since Lðt0Þ ¼ 0, ðt � t0ÞjL. Let ~qq ¼ L=ðt � t0Þ.
Then it is easy to verify that p and ~qq also form a basis of the module MP . But

degð~qqÞ < degðqÞ, contradicting that p and q are a l-basis. Hence, pðt0Þ and qðt0Þ
are linearly independent for any t0.

(4) Suppose that LVðpÞ and LVðqÞ are linearly dependent. Then aLVðpÞþ
bLVðqÞ ¼ 0 for some constants a and b, both are nonzero. Let ~qq ¼ aptd þ bq, where
d ¼ degðqÞ � degðpÞ. Then p and ~qq also form a basis of MP . However, since the lead-

ing coefficient vectors of aptd and bq cancel each other, degð~qqÞ < degðqÞ, contradict-
ing that q has the lowest degree among all the bases of PðtÞ. Hence, LVðpÞ and LVðqÞ
are linearly independent.

(5) For any moving line L of P, suppose L ¼ h1pþ h2q and L ¼ g1pþ g2q. Then
ðh1 � g1Þpþ ðh2 � g2Þq ¼ 0. It follows that h1 ¼ g1 and h2 ¼ g2, since, by Property

(1) above, p and q are R½t	-linearly independent. Hence expression (6) is unique.

(6) Suppose L ¼ h1pþ h2q. If degðh1pÞ > degðLÞ, then LVðh1pÞ þ LVðh2qÞ ¼ 0,

thus LVðpÞ and LVðqÞ are linearly dependent, contradicting Property (4) above.

Hence, degðh1pÞ6 degðLÞ. Similarly, degðh2qÞ6 degðLÞ.
(7) Since p � PðtÞ ¼ q � PðtÞ ¼ 0, and p and q areR½t	-linearly independent, we have

p� q ¼ ðgðtÞ=hðtÞÞPðtÞ for gðtÞ; hðtÞ 2 R½t	, where g and h are relatively prime. Since

aðtÞ, bðtÞ, and cðtÞ are relatively prime, hðtÞ must be a constant. If gðtÞ is not a con-

stant, letting t0 be a zero of gðtÞ over the complex field, then pðt0Þ � qðt0Þ ¼ 0, i.e.
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pðt0Þ and qðt0Þ are linearly dependent; but this contradicts Property (3) above. So gðtÞ
is also a constant, and plainly, g 6¼ 0. Hence, p� q ¼ kPðtÞ for some nonzero con-
stant k.

(8) From Property (7), degðp� qÞ ¼ degðPÞ ¼ n. Let p ¼ plt
l þ pl�1t

l�1 þ � � � þ p0
and q ¼ qmt

m þ qm�1t
m�1 þ � � � þ q0. Then p� q ¼ ðpl � qmÞtlþm þ � � � þ p0 � q0. By

Property (4), LVðpÞ ¼ pl and LVðqÞ ¼ qm are linearly independent, so pl � qm 6¼ 0. It

follows that

degðpÞ þ degðqÞ ¼ l þ m ¼ degðp� qÞ ¼ degðPÞ ¼ n:

The uniqueness of l is implied by the minimality of the degrees of p and q.

On the other hand, let L 2 MP be any moving line of PðtÞ, then L ¼ h1pþ h2q for

some h1; h2 2 R½t	. If degðLÞ < l, then LVðh1pÞ and LVðh2qÞ cancel with each other.

Hence LVðpÞ and LVðqÞ are linearly dependent, a contradiction to Property 4 above.

Thus l is the lowest degree of any moving line of PðtÞ.
(9) First recall that the moving line ideal IP is generated by cx� a and cy � b.

Since cx� a; cy � b 2 MP , and p and q are a basis of MP , cx� a; cy � b can be ex-

pressed by linear combinations of p and q over R½t	. Hence, IP can be generated
by p and q.

(10) See [3].

This completes of the proof of Theorem 1. �

The relationship between different l-bases of a rational curve PðtÞ is given by the

following theorem.

Theorem 2. Let p; q, and ~pp; ~qq be two l-bases of a rational curve PðtÞ, with
degðpÞ6 degðqÞ and degð~ppÞ6 degð~qqÞ. Then degðpÞ ¼ degð~ppÞ and degðqÞ ¼ degð~qqÞ.
Furthermore, if degðpÞ ¼ degðqÞ, then

~pp ¼ a1pþ b1q; ~qq ¼ a2pþ b2q

for some constants a1, a2, b1, and b2 with a1b2 � a2b1 6¼ 0; if degðpÞ < degðqÞ, then
~pp ¼ ap; ~qq ¼ hpþ bq

for some nonzero constants a and b, and h 2 R½t	 with degðhÞ6 degðqÞ � degðpÞ.

Proof. By the definition of the l-basis, it is straightforward to see that

degðpÞ ¼ degð~ppÞ and degðqÞ ¼ degð~qqÞ. This is also Property (8) of Theorem 1.

Since ~pp; ~qq 2 MP , and p; q are a basis of MP ,

~pp ¼ a1pþ b1q; ~qq ¼ a2pþ b2q;

with ai; bi 2 R½t	, i ¼ 1; 2. If degðpÞ ¼ degðqÞ, then degð~ppÞ ¼ degð~qqÞ ¼ degðpÞ ¼
degðqÞ. It then follows from by Property (6) of Theorem 1 that a1, a2, b1, and b2 are

constants. We have a1b2 � a2b1 6¼ 0 since ~pp and ~qq are R½t	-linearly independent.

If degðpÞ < degðqÞ, then degð~ppÞ ¼ degðpÞ < degðqÞ. Again by Property (6) of

Theorem 1, b1 ¼ 0 and a1 is a nonzero constant. Similarly, from degð~qqÞ ¼
degðqÞ > degðpÞ, one has b2 is a nonzero constant and degða2Þ6 degðqÞ�
degðpÞ. �
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2.2. Equivalent definitions

Next we provide some equivalent definitions of a l-basis of a planar rational

curve.

Theorem 3. Let p; q 2 MP be two moving lines of a planar rational curve PðtÞ of degree
n. Assume degðpÞ6 degðqÞ. Then p and q form a l-basis of PðtÞ if and only if one of the
following conditions holds
1. Any moving line L can be expressed in (6) with degðh1pÞ6 degðLÞ and

degðh2qÞ6 degðLÞ.
2. Any moving line L can be expressed in (6), and LVðpÞ and LVðqÞ are linearly inde-

pendent.
3. Any moving line L can be expressed in (6) and degðpÞ þ degðqÞ ¼ n.
4. p� q ¼ kP for some non-zero constant k and degðpÞ þ degðqÞ ¼ n.
5. p� q ¼ kP for some non-zero constant k, and LVðpÞ and LVðqÞ are linearly inde-

pendent.
6. degðpÞ þ degðqÞ ¼ n, and p and q are R½t	-linearly independent.
7. degðpÞ þ degðqÞ ¼ n, and LVðpÞ and LVðqÞ are linearly independent.
8. degðpÞ þ degðqÞ ¼ n and IP ¼ hp; qi. Here p ¼ p � ðx; y; 1Þ and q ¼ q � ðx; y; 1Þ.

Proof. The necessity of all the above conditions has been proved in Theorem 1. So in

the following we consider only their sufficiency.

(1) We just need to show that p and q have the lowest possible degree among all

the bases of MP . Let ~pp and ~qq be any basis of MP with degð~ppÞ6 degð~qqÞ. We first show

degðpÞ6 degð~ppÞ. Clearly,
~pp ¼ h11pþ h12q; ~qq ¼ h21pþ h22q

for some hij 2 R½t	, i; j ¼ 1; 2. If h11 6¼ 0, since degðh11pÞ6 degð~ppÞ, it follows that

degðpÞ6 degð~ppÞ; if h11 ¼ 0 and h12 6¼ 0, then degðpÞ6 degðqÞ6 degð~ppÞ. So there is

always degðpÞ6 degð~ppÞ.
Next we show degðqÞ6 degð~qqÞ. If h22 6¼ 0, since degðh22qÞ6 degð~qqÞ, we have

degðqÞ6 degð~qqÞ. If h22 ¼ 0, then h12 6¼ 0, for otherwise ~pp and ~qq cannot be a basis
of P. In this case, since degðh12qÞ6 degð~ppÞ, we have degðqÞ6 degð~ppÞ6 degð~qqÞ. So
there is always degðqÞ6 degð~qqÞ.

We have shown that p and q are a basis of MP with the lowest degrees. Hence, p

and q form a l-basis of MP .

(2) Given a moving line L of P, suppose L ¼ h1pþ h2q. Since LVðpÞ and LVðqÞ
are linearly independent, LVðh1pÞ and LVðh2qÞ do not cancel each other; hence,

degðh1pÞ6 degðLÞ and degðh2qÞ6 degðLÞ. Then, by condition (1), p and q form a

l-basis of MP .
(3) Again, we just need to show that p and q have the lowest degrees possible. First

note that p and q form a basis of MP since, by assumption, any moving line in MP is

expressible in (6). Let ~pp and ~qq be a l-basis of MP with degð~ppÞ ¼ l and

degð~qqÞ ¼ n� l, where 0 < l6 bn=2c. Because of the minimality of the degrees of
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the l-basis, we have degðpÞP l. If degðpÞ > l, then degðpÞ6 degðqÞ < n� l since

degðpÞ þ degðqÞ ¼ n. By Property (6) of the l-basis in Theorem 1, p ¼ h1~pp and
q ¼ h2~pp for some h1; h2 2 R½t	. Thus h2p� h1q ¼ 0, that is, p and q are R½t	-linearly
dependent. This contradicts that p and q form a basis of MP . Thus degðpÞ ¼ l
and degðqÞ ¼ n� l, and hence, p and q are a l-basis of MP .

(4) Since p� q ¼ kP for some nonzero constant k, for any moving line L of PðtÞ,
L � p� q ¼ L � P � 0. Hence gL ¼ h1pþ h2q for some g; h1; h2 2 R½t	, where

GCDðg; h1; h2Þ ¼ 1. Further, if g is not a constant, letting t0 be a zero of g over

the complex field, then h1ðt0Þpðt0Þ þ h2ðt0Þqðt0Þ ¼ 0, but this contradicts Property

(3) of Theorem 1 stating that pðt0Þ and qðt0Þ are linearly independent for any param-
eter value t0. Hence g is a nonzero constant. So we may write L ¼ h1pþ h2q for some

h1; h2 2 R½t	. Then, by condition (3) above, p and q form a l-basis of MP .

(5) Similar to the argument in the proof above for condition (4), it can be shown

that any moving lines L of PðtÞ can be expressed by L ¼ h1pþ h2q with h1; h2 2 R½t	.
Then, by condition (2), the proof is completed.

(6) Since p and q are R½t	-linearly independent moving lines of P, gðp� qÞ ¼ hP
for g; h 2 R½t	, where g; h are relatively prime. Since the components a; b; c 2 R½t	
of P are relatively prime, g must be a nonzero constant. Thus

n ¼ degðpÞ þ degðqÞP degðp� qÞ ¼ degðhÞ þ degðPÞ ¼ degðhÞ þ n:

It follows that degðhÞ ¼ 0. Hence, we may write p� q ¼ kP for some nonzero

constant k. Now, by condition (4), p and q are a l-basis of MP .

(7) Since LVðpÞ and LVðqÞ are linearly independent, LVðp� qÞ ¼ LVðpÞ�
LVðqÞ 6¼ 0. It follows that p� q 6¼ 0; thus p and q are R½t	-linearly independent.

Now, by condition (6), p and q form a l-basis of MP .
(8) Since cx� a; cy � b 2 I ¼ hp; qi, similar to the proof of Property (1) of Theo-

rem 1, one can show that p and q are R½t	-linearly independent. By condition (6), p

and q are a l-basis of PðtÞ.
The proof of Theorem 3 is completed. �

Two definitions for the l-basis are given in [3]. The first definition is for planar

rational curves and equivalent to condition (6) in Theorem 3 above. The second def-

inition is for the general case of a rational curve in Rd , d P 2. This second definition,
when d ¼ 2, is equivalent to the first one but contains a redundant condition

degðpÞ þ degðqÞ ¼ n.

3. Computation of l-basis

We present in this section a new method for computing a l-basis of a planar ra-

tional curve. The conditions (2) and (3) in Theorem 3 will play a key role in devel-
oping this algorithm. We begin with the review of some existing methods.

The first method for computing a l-basis of a rational curve PðtÞ using undeter-

mined coefficients is described by Sederberg et al. [6]. This algorithm needs Oðn3Þ
arithmetic operations, where n is the degree of PðtÞ.
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A more efficient algorithm for computing the l-basis has recently been developed

by Zheng and Sederberg [7]; we will call it the ZS algorithm. Given a set of three gen-
erating vector polynomials of the moving line module MP , the ZS algorithm sorts all

the terms of the vector polynomials in the order of their degrees and component in-

dices, and exploits the observation that the leading coefficients of at least two gener-

ating vector polynomials have the same basis vector; this observation enables one to

reduce the degree of one component of one vector polynomial in each reduction step,

until a l-basis is reached. The ZS algorithm is similar to Buchberger�s algorithm for

computing the Gr€ooebner basis of a module, and its efficiency lies in that no more

than three generators of the module MP are maintained at any moment. The com-
plexity of the ZS algorithm is Oðn2Þ [7].

We will present, in this paper, an improved algorithm for computing the l-basis
of a planar rational curve. Our algorithm is similar to the ZS algorithm in that it also

operates in the moving line module. However, based on the linear dependency of the

leading coefficient vectors of the generating vector polynomials of MP , we are able to

eliminate simultaneously the highest degree terms of all components of a vector poly-

nomial in each reduction step, thus reducing the degrees of the polynomials more

quickly than the ZS algorithm does. Moreover, our approach is conceptually simpler
since it skips the need of sorting all the terms of the generating vector polynomials.

In addition, the effective vector elimination scheme used makes the new algorithm

easily extendable to computing the l-basis of a rational curve in higher dimensions.

Based on operation count, the new algorithm also has the time complexity Oðn2Þ,
but with the proportional constant about twice as small as that of the ZS algorithm.

In the following we present the algorithm and analyze its time complexity. Before

going on, we provide two lemmas.

3.1. Lemmas

Lemma 1. The moving line module MP of a planar rational curve PðtÞ ¼
ðaðtÞ; bðtÞ; cðtÞÞ is generated by the three vector polynomials v1; v2, and v3, where
v1 ¼ ð�b; a; 0Þ, v2 ¼ ð�c; 0; aÞ, and v3 ¼ ð0; c;�bÞ.

Proof. The proof will be given by adapting the proof of Lemma 1 in [3]. See also [7].

For completeness, we sketch the proof in the following.
Since a, b, and c are relatively prime, there exist u; v;w 2 R½t	 such that

uaþ vbþ wc ¼ 1. Suppose that AðtÞxþ BðtÞy þ CðtÞ ¼ 0 is a moving line in MP .

For brevity, AðtÞ, BðtÞ, and CðtÞ will be denoted by A, B, and C, respectively, in
the following. Since aAþ bBþ cC ¼ 0, it follows that

A ¼ uaAþ vbAþ wcA ¼ uð�bB� cCÞ þ vbAþ wcA

¼ �bðuB� vAÞ � cðuC � wAÞ:

Similarly,

B ¼ aðuB� vAÞ þ cð�vC þ wBÞ
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and

C ¼ aðuC � wAÞ � bð�vC þ wBÞ:
Then

ðA;B;CÞ ¼ h1v1 þ h2v2 þ h3v3;

where h1 ¼ uB� vA, h2 ¼ uC � wA, h3 ¼ �vC þ wB. Hence, MP � hv1; v2; v3i. On the

other hand, it is easy to see that v1; v2; v3 2 MP . Hence, MP ¼ hv1; v2; v3i. �

Lemma 2. Let v1, v2, and v3 be as defined in Lemma 1. Then
1. rankðv1; v2; v3Þ ¼ 2

2. rankðLVðv1Þ;LVðv2Þ;LVðv3ÞÞ ¼ 2.

Proof. Since cv1 � bv2 þ av3 ¼ 0, v1; v2; v3 are R½t	-linearly dependent, thus

rankðv1; v2; v3Þ6 2. On the other hand, v1 and v2 areR½t	-linearly independent. Hence

rankðv1; v2; v3Þ ¼ 2.
To prove (2), suppose

a ¼
XdegðaÞ

i¼0

aiti; b ¼
XdegðbÞ

i¼0

biti; c ¼
XdegðcÞ

i¼0

citi:

Wlog, assume n ¼ degðaÞP degðbÞP degðcÞ. Then an 6¼ 0. It follows that

LVðv1Þ ¼ ð�bn; an; 0Þ and LVðv2Þ ¼ ð�cn; 0; anÞ are linearly independent. But LVðv1Þ,
LVðv2Þ, and LVðv3Þ are linearly dependent, since cnLVðv1Þ � bnLVðv2Þ þ
anLVðv3Þ ¼ 0. Hence, rankðLVðv1Þ;LVðv2Þ;LVðv3ÞÞ ¼ 2. �

3.2. Algorithm

Now we are ready to describe the new algorithm for computing a l-basis of a
planar rational curve.

Algorithm for computing a l-basis

Input: PðtÞ ¼ ðaðtÞ; bðtÞ; cðtÞÞ 2 R½t	3.
Output: Two polynomials forming a l-basis of PðtÞ.
Variables: u1; u2; u3 are program variables for vector polynomials, and m1;m2;m3

are program variables for numerical vectors.

Step 1 Set u1 :¼ v1 � ð�b; a; 0Þ, u2 :¼ v2 � ð�c; 0; aÞ, and u3 :¼ v3 � ð0; c;�bÞ. Set
m1 :¼ LVðu1Þ, m2 :¼ LVðu2Þ, and m3 :¼ LVðu3Þ.

Step 2 Set ni :¼ degðuiÞ, i ¼ 1; 2; 3. Without loss of generality, assume

n1 P n2 P n3, by renumbering the ui, i ¼ 1; 2; 3, if necessary. Find real numbers

a1; a2; a3 (at least two of them are non-zero) such that

a1m1 þ a2m2 þ a3m3 ¼ 0: ð7Þ
If a1 6¼ 0, update u1 by

u1 :¼ a1u1 þ a2tn1�n2u2 þ a3tn1�n3u3
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and set m1 :¼ LVðu1Þ and n1 :¼ degðu1Þ. If a1 ¼ 0 (then both a2 and a3 are non-zero),

update u2 by

u2 :¼ a2u2 þ a3tn2�n3u3

and set m2 :¼ LVðu2Þ and n2 :¼ degðu2Þ.
Step 3 If one of u1, u2, and u3 is zero, say u1 ¼ 0, then output u2 and u3, and stop;

else, go to Step 2.

Theorem 4. Let p and q denote the two vector polynomials output by the above al-
gorithm. Then
1. The algorithm terminates in a finite number of steps.
2. p and q are a l-basis of MP .

Proof. Upon initialization, by Lemma 2, rankðu1; u2; u3Þ ¼ 2 and rankfm1;
m2;m3g ¼ rankðLVðu1Þ;LVðu2Þ;LVðu3ÞÞ ¼ 2. Note that the basic iteration step in

the algorithm is the replacement in Step 2. Since each replacement is an invertible
elementary row reduction applied to matrix ðuT1 ; uT2 ; uT3 Þ

T
as well as ðmT

1 ;m
T
2 ;m

T
3 Þ

T
,

rankðu1; u2; u3Þ and rankðm1;m2;m3Þ are not altered, i.e., they are always 2. Since

rankðm1;m2;m3Þ ¼ 2, there exist real numbers a1, a2, and a3, at least two of which are

nonzero, such that (7) holds. Hence, Step 2 can be carried out properly. Because each

replacement in Step 2 lowers at least by one the degree of one of the ui, i ¼ 1; 2; 3,
one of the ui must become zero vector in a finite number of steps. Hence, the al-

gorithm terminates in a finite number of steps. This proves (1).

When the algorithm terminates, suppose we have u1 ¼ 0. Since rankfu1; u2;
u3g ¼ 2, u2 and u3, which are output as p and q, are R½t	-linearly independent. Fur-

thermore, since each replacement in Step 2 is an invertible row reduction, fu1; u2; u3g
is the generating set of module MP after each replacement. Hence, p and q generate

MP , i.e., any moving line L 2 MP can be expressed by L ¼ h1pþ h2q with

h1; h2 2 MP .

Next we show that LVðpÞ and LVðqÞ are linearly independent. Since

rankðm1;m2;m3Þ ¼ 2 always holds, upon the termination of the algorithm,

rankð0;LVðpÞ;LVðqÞÞ ¼ 2; that is, LVðpÞ and LVðqÞ are linearly independent. Then,
by condition (2) of Theorem 3, p and q form a l-basis of MP . �

By condition (7) of Theorem 3, which is an equivalent definition of the l-basis, we
may use, as an alternative, the following termination condition: The algorithm ter-

minates when there exist two vector polynomials among u1; u2; u3, say u2 and u3, such

that degðu2Þ þ degðu3Þ ¼ n and LVðu2Þ and LVðu3Þ are linearly independent.

Remark. Our algorithm is based on the linear dependency of the leading coefficient
vectors of the three non-zero generators, and its correctness is implied by a newly

established property that a l-basis of MP is a basis of MP with linearly independent

leading coefficient vectors, i.e., condition (2) of Theorem 3. In comparison, the ZS

algorithm is based on the observation that the leading terms of two of the three
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generating vector polynomials have the same standard basis vector [7], and therefore

all monomial terms in a vector polynomial have to be sorted by their degrees and
then by positions, component-wise, in order to carry on the algorithm. As a con-

sequence, we are able to devise a conceptually simpler and computationally more

efficient algorithm for computing the l-basis than the ZS algorithm, saving the

trouble to sort all the terms of a vector polynomial component-wise.

The example below illustrates how our algorithm works.

Example 1. Consider a quadratic curve

PðtÞ ¼ ð2t2 þ 4t þ 5; 3t2 þ t þ 4; t2 þ 2t þ 3Þ:

Then

u1 :¼ ð3t2 þ t þ 4;�2t2 � 4t � 5; 0Þ;
u2 :¼ ðt2 þ 2t þ 3; 0;�2t2 � 4t � 5Þ;
u3 :¼ ð0; t2 þ 2t þ 3;�3t2 � t � 4Þ:

The leading vectors of ui, i ¼ 1; 2; 3, are m1 ¼ ð3;�2; 0Þ, m2 ¼ ð1; 0;�2Þ and

m3 ¼ ð0; 1;�3Þ. Since m1 � 3m2 þ 2m3 ¼ 0, we update u3 by

u3 :¼ u1 � 3u2 þ 2u3 ¼ ð�5t � 5; 1; 10t þ 7Þ

and m3 by ð�5; 0; 10Þ.
For the next step, since 5m2 þm3 ¼ 0, we update u2 by

u2 :¼ 5u2 þ tu3 ¼ ð5t þ 15; t;�13t � 25Þ

and m2 by ð5; 1;�13Þ. Now, since degðu2Þ þ degðu3Þ ¼ 2 ¼ degðPðtÞÞ, and m2 and m3

are R½t	-linearly independent, the algorithm terminates and we obtain the l-basis

p ¼ ð5t þ 15Þxþ ty � 13t � 25; q ¼ ð�5t � 5Þxþ y þ 10t þ 7:

3.3. Computational complexity

Now we analyze in this section the computational complexity of the new algo-

rithm and compare it with the ZS algorithm.

When the termination condition degðpÞ þ degðqÞ ¼ n is satisfied, the degrees of

the polynomials ui, i ¼ 1; 2; 3, are n� l, l, and m > l, respectively, with l6 ½n=2	.
Thus, totally, at most l þ ðn� lÞ þ ðn� l � 1Þ ¼ 2n� l � 1 replacements are per-
formed. To update a degree i (i > n� l) vector polynomial, 9iþ 6 multiplications

and 6iþ 3 additions are required, including computing the constants a, b, and c.
Similarly, to update a degree i (l < i6 n� l) vector polynomial, 6i multiplications

and 3i additions are needed. Thus, totally, at most 3
Pn

i¼n�lþ1ð9iþ 6Þ þ
2
Pn�l

i¼lþ1 6i ¼ 27lð2n� l þ 1Þ=2þ 6ðn� 1Þðn� 2lÞ þ 18l multiplications and

3
Pn

i¼n�lþ1ð6iþ 3Þ þ 2
Pn�l

i¼lþ1 3i ¼ 9lð2n� l þ 1Þ þ 3ðn� 1Þðn� 2lÞ þ 9l additions

are required.
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In the generic case where l ¼ n=2, the costs are about ð81=8Þn2 þ ð63=4Þn multi-

plications and ð27=4Þn2 þ 9n additions. In comparison, the cost of the ZS algorithm
is ð81=4Þn2 þ ð63=2Þn multiplications and ð81=8Þn2 þ ð63=4Þn additions. So our algo-

rithm is about twice as fast as the ZS algorithm in the generic case. As l < n=2 gets

smaller, the improvement of our algorithm over the ZS algorithm is even better; for

example, if l ¼ n=3, the number of multiplications used in our algorithm and

the number of multiplications in the ZS algorithm are about ð19=2Þn2 and 21n2,
respectively.

4. Conclusion

We have presented some properties and equivalent definitions of the l-basis of a
planar rational curve. Several of these properties and definitions are new, and help

us gain a better understanding of the l-basis. These results have recently been used

in the study of the reparameterization of a rational ruled surface [1]. Furthermore,

based on these results, we presented in the present paper an improved algorithm

for computing a l-basis of a planar rational curve. The idea of the algorithm is
to apply vector elimination efficiently to the moving line module of a rational

curve. We have shown that the new algorithm is faster than the ZS algorithm

[7], which is the fastest previous algorithm for computing the l-basis of a planar

rational curve. The two algorithms have the same order of operation counts,

Oðn2Þ, but the proportional constant of our algorithm is about twice as small as

that of the ZS algorithm; this difference further widens for rational curves in higher

dimensions.
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